Высокоточный источники опорного напряжения (ИОН). Источник опорного напряжения TL431 Микросхемы для источников опорного напряжения

Внимание!!! Доставка ВСЕХ приборов, которые приведены на сайте, происходит по ВСЕЙ территории следующих стран: Российская Федерация, Украина, Республика Беларусь, Республика Казахстан и другие страны СНГ.

По России существует налаженная система поставки в такие города: Москва, Санкт-Петербург, Сургут, Нижневартовск, Омск, Пермь, Уфа, Норильск, Челябинск, Новокузнецк, Череповец, Альметьевск, Волгоград, Липецк Магнитогорск, Тольятти, Когалым, Кстово, Новый Уренгой, Нижнекамск, Нефтеюганск, Нижний Тагил, Ханты-Мансийск, Екатеринбург, Самара, Калининград, Надым, Ноябрьск, Выкса, Нижний Новгород, Калуга, Новосибирск, Ростов-на-Дону, Верхняя Пышма, Красноярск, Казань, Набережные Челны, Мурманск, Всеволожск, Ярославль, Кемерово, Рязань, Саратов, Тула, Усинск, Оренбург, Новотроицк, Краснодар, Ульяновск, Ижевск, Иркутск, Тюмень, Воронеж, Чебоксары, Нефтекамск, Великий Новгород, Тверь, Астрахань, Новомосковск, Томск, Прокопьевск, Пенза, Урай, Первоуральск, Белгород, Курск, Таганрог, Владимир, Нефтегорск, Киров, Брянск, Смоленск, Саранск, Улан-Удэ, Владивосток, Воркута, Подольск, Красногорск, Новоуральск, Новороссийск, Хабаровск, Железногорск, Кострома, Зеленогорск, Тамбов, Ставрополь, Светогорск, Жигулевск, Архангельск и другие города Российской Федерации.

По Украине существует налаженная система поставки в такие города: Киев, Харьков, Днепр (Днепропетровск), Одесса, Донецк, Львов, Запорожье, Николаев, Луганск, Винница, Симферополь, Херсон, Полтава, Чернигов, Черкассы, Сумы, Житомир, Кировоград, Хмельницкий, Ровно, Черновцы, Тернополь, Ивано-Франковск, Луцк, Ужгород и другие города Украины.

По Белоруссии существует налаженная система поставки в такие города: Минск, Витебск, Могилев, Гомель, Мозырь, Брест, Лида, Пинск, Орша, Полоцк, Гродно, Жодино, Молодечно и другие города Республики Беларусь.

По Казахстану существует налаженная система поставки в такие города: Астана, Алматы, Экибастуз, Павлодар, Актобе, Караганда, Уральск, Актау, Атырау, Аркалык, Балхаш, Жезказган, Кокшетау, Костанай, Тараз, Шымкент, Кызылорда, Лисаковск, Шахтинск, Петропавловск, Ридер, Рудный, Семей, Талдыкорган, Темиртау, Усть-Каменогорск и другие города Республики Казахстан.

Производитель ТМ «Инфракар» - это изготовитель многофункциональных приборов таких, как газоанализатор и дымомер.

При отсутствии на сайте в техническом описании необходимой Вам информации о приборе Вы всегда можете обратиться к нам за помощью. Наши квалифицированные менеджеры уточнят для Вас технические характеристики на прибор из его технической документации: инструкция по эксплуатации, паспорт, формуляр, руководство по эксплуатации, схемы. При необходимости мы сделаем фотографии интересующего вас прибора, стенда или устройства.

Вы можете оставить отзывы на приобретенный у нас прибор, измеритель, устройство, индикатор или изделие. Ваш отзыв при Вашем согласии будет опубликован на сайте без указания контактной информации.

Описание на приборы взято с технической документации или с технической литературы. Большинство фото изделий сделаны непосредственно нашими специалистами перед отгрузкой товара. В описании устройства предоставлены основные технические характеристики приборов: номинал, диапазон измерения, класс точности, шкала, напряжение питания, габариты (размер), вес. Если на сайте Вы увидели несоответствие названия прибора (модель) техническим характеристикам, фото или прикрепленным документам - сообщите об этом нам - Вы получите полезный подарок вместе с покупаемым прибором.

При потребности, уточнить общий вес и габариты или размер отдельной части измерителя Вы можете в нашем сервисном центре. При потребности наши инженеры помогут подобрать полный аналог или наиболее подходящую замену на интересующий вас прибор. Все аналоги и замена будут протестированы в одной с наших лабораторий на полное соответствие Вашим требованиям.

Наше предприятие осуществляет ремонт и сервисное обслуживание измерительной техники более чем 75 разных заводов производителей бывшего СССР и СНГ. Также мы осуществляем такие метрологические процедуры: калибровка, тарирование, градуирование, испытание средств измерительной техники.

Осуществляется поставка приборов в такие страны: Азербайджан (Баку), Армения (Ереван), Киргизстан (Бишкек), Молдавия (Кишинёв), Таджикистан (Душанбе), Туркменистан (Ашхабад), Узбекистан (Ташкент), Литва (Вильнюс), Латвия (Рига), Эстония (Таллин), Грузия (Тбилиси).

ООО «Западприбор» - это огромный выбор измерительного оборудования по лучшему соотношению цена и качество. Чтобы Вы могли купить приборы недорого, мы проводим мониторинг цен конкурентов и всегда готовы предложить более низкую цену. Мы продаем только качественные товары по самым лучшим ценам. На нашем сайте Вы можете дешево купить как последние новинки, так и проверенные временем приборы от лучших производителей.

На сайте постоянно действует акция «Куплю по лучшей цене» - если на другом интернет-ресурсе у товара, представленного на нашем сайте, меньшая цена, то мы продадим Вам его еще дешевле! Покупателям также предоставляется дополнительная скидка за оставленный отзыв или фотографии применения наших товаров.

В прайс-листе указана не вся номенклатура предлагаемой продукции. Цены на товары, не вошедшие в прайс-лист можете узнать, связавшись с менеджерами. Также у наших менеджеров Вы можете получить подробную информацию о том, как дешево и выгодно купить измерительные приборы оптом и в розницу. Телефон и электронная почта для консультаций по вопросам приобретения, доставки или получения скидки приведены над описанием товара. У нас самые квалифицированные сотрудники, качественное оборудование и выгодная цена.

ООО «Западприбор» - официальный дилер заводов изготовителей измерительного оборудования. Наша цель - продажа товаров высокого качества с лучшими ценовыми предложениями и сервисом для наших клиентов. Наша компания может не только продать необходимый Вам прибор, но и предложить дополнительные услуги по его поверке, ремонту и монтажу. Чтобы у Вас остались приятные впечатления после покупки на нашем сайте, мы предусмотрели специальные гарантированные подарки к самым популярным товарам.

Завод «МЕТА» - это производитель наиболее надежных приборов для проведения техосмотра. Тормозной стенд СТМ производится именно на этом заводе.

Если Вы можете сделать ремонт устройства самостоятельно, то наши инженеры могут предоставить Вам полный комплект необходимой технической документации: электрическая схема, ТО, РЭ, ФО, ПС. Также мы располагаем обширной базой технических и метрологических документов: технические условия (ТУ), техническое задание (ТЗ), ГОСТ, отраслевой стандарт (ОСТ), методика поверки, методика аттестации, поверочная схема для более чем 3500 типов измерительной техники от производителя данного оборудования. Из сайта Вы можете скачать весь необходимый софт (программа, драйвер) необходимый для работы приобретенного устройства.

Также у нас есть библиотека нормативно-правовых документов, которые связаны с нашей сферой деятельности: закон, кодекс, постановление, указ, временное положение.

По требованию заказчика на каждый измерительный прибор предоставляется поверка или метрологическая аттестация. Наши сотрудники могут представлять Ваши интересы в таких метрологических организациях как Ростест (Росстандарт), Госстандарт, Госпотребстандарт, ЦЛИТ, ОГМетр.

Иногда клиенты могут вводить название нашей компании неправильно - например, западпрыбор, западпрылад, западпрібор, западприлад, західприбор, західпрібор, захидприбор, захидприлад, захидпрібор, захидпрыбор, захидпрылад. Правильно - западприбор.

ООО «Западприбор» является поставщиком амперметров, вольтметров, ваттметров, частотомеров, фазометров, шунтов и прочих приборов таких заводов-изготовителей измерительного оборудования, как: ПО «Электроточприбор» (М2044, М2051), г. Омск; ОАО «Приборостроительный завод «Вибратор» (М1611, Ц1611), г. Санкт-Петербург; ОАО «Краснодарский ЗИП» (Э365, Э377, Э378), ООО «ЗИП-Партнер» (Ц301, Ц302, Ц300) и ООО «ЗИП «Юримов» (М381, Ц33), г. Краснодар; ОАО«ВЗЭП» («Витебский завод электроизмерительных приборов») (Э8030, Э8021), г. Витебск; ОАО «Электроприбор» (М42300, М42301, М42303, М42304, М42305, М42306), г. Чебоксары; ОАО "Электроизмеритель" (Ц4342, Ц4352, Ц4353) г. Житомир; ПАО "Уманский завод "Мегомметр" (Ф4102, Ф4103, Ф4104, М4100), г. Умань.

Новости Электроники 14, 2008

В статье рассматривается новое семейство прецизионных источников опорного напряжения (ИОН) из производственной линии Burr-Brown REF50xx. Эти ИОН выполнены по архитектуре бэндгап, но по характеристикам начального разброса, температурного дрейфа и шума способны конкурировать с другими лидирующими по уровню прецизионности архитектурами.

Источники опорного напряжения являются важной составной частью любого цифрового оборудования с функцией ввода/вывода аналоговых сигналов. Параметры этого прибора напрямую влияют на уровень рабочих характеристик конечной продукции. Возможностей встроенного в микроконтроллеры ИОН, при работе во всем рабочем диапазоне температур, хватит в лучшем случае на обеспечение 8-битной разрешающей способности. Например, чтобы обеспечить точность работы в 1/2 м.з.р. интегрируемого во многие микроконтроллеры 10-битного АЦП необходимо, чтобы диапазон изменения выходного напряжения ИОН не превышал 1,22 мВ (для ИОН на напряжение 2,5 В). В случае встроенного ИОН, который не предусматривает возможности подстройки выходного напряжения, в этот уровень должно уложиться изменение выходного напряжения, вызванное влиянием как температурного дрейфа, так и начального разброса. Таким образом, при обоснованном подходе к выбору ИОН для применений с 10-битной и более разрешающей способностью преобразования, скорее всего, возникнет потребность в применении внешнего ИОН. К дополнительным преимуществам такого выбора также относятся:

  • возможность выбора ИОН с подходящим к заданным условиям применения выходным напряжением, меньшим уровнем шума, функцией аналоговой подстройки выходного напряжения, другими вспомогательными функциями и пр.;
  • возможность работы не только совместно с АЦП/ЦАП, но и с внешней аналоговой схемой сопряжения;
  • более высокая нагрузочная способность;
  • возможность лучшей изоляции от влияния потребляемого цифровыми ИС тока.

Первый интегральный ИОН был разработан в 1969 году легендарным изобретателем и виртуозом транзисторных схем Робертом Видларом (в то время сотрудником National Semiconductor) в ходе работы над первым однокристальным 20-ваттным линейным стабилизатором напряжения LM109. Позже, в 1971 году, Видлар совместно с еще одним легендарным разработчиком Робертом Добкиным разрабатывают первый монолитный ИОН LM113. Этот ИОН получил название «бэндгап» (или ИОН на разности база-эмиттерных напряжений). Он был двухвыводным прибором и включался в схему по типу стабилитрона. Даже сейчас многие разработчики предпочитают называть ИОН этого типа программируемыми стабилитронами и обозначать их на схеме как стабилитроны, хотя правильнее их называть «ИОН параллельного (или шунтового) типа», что указывает на подключение параллельно нагрузке. Некоторые ИОН этого типа, например, TL431 компании Texas Instruments, выпускаются уже много лет и по-прежнему сохраняют свою популярность. Более совершенный, с точки зрения прецизионности, последовательный тип бэндгап ИОН был предложен Полом Брокау в конце 1970-х и выпускался компанией Analog Devices под наименованием AD580. Он отличался 3-выводным подключением (по типу стабилизатора напряжения), позволял с помощью резистивного делителя напряжения устанавливать требуемое выходное напряжение (с использованием развивающейся в то время технологии лазерной подгонки параметров) и допускал возможность протекания выходного тока в обоих направлениях. Именно этот тип ИОН, ввиду оптимального соотношения «цена - качество» и сравнительной доступности в широком числе исполнений, со временем стал наиболее распространенным и выпускается в настоящее время множеством производителей.

Одним из лидеров в области разработки и производства бэндгап ИОН является компания Texas Instruments (TI). Одна из ее недавних разработок, серия REF50хх, стала настоящим прорывом для ИОН типа бэндгап, т.к. теперь по совокупности рабочих характеристик и степени прецизионности их можно поставить на одну ступеньку с лидирующими на данный момент архитектурами XFET компании Analog Devices и FGA компании Intersil (последняя архитектура была разработана в 2003 году компанией Xicor, год спустя вошедшей в состав Intersil; ее принцип действия идентичен ЭСППЗУ, но для хранения данных не в двоичной форме, а в аналоговой). Убедиться в этом поможет таблица 1, где представлены характеристики представителей семейства REF50xx и лучших ИОН с выходным напряжением 2,5 В, выполненных по технологиям FGA, XFET и стабилитрона со скрытым пробоем.

Таблица 1. Основные характеристики ИОН семейства REF50xx и лучших конкурирующих решений

Семейство REF50xx Сравнение с лучшими
конкурирующими
решениями (V OUT = 2,5 В)
REF5020 REF5025 REF5030 REF5040 REF5045 REF5050 ISL21009 ADR291 MAX6325
Архитектура Бэндгап, последовательный тип FGA XFET Стабили-
трон со скрытым пробоем
Выходное напряжение V OUT , В 2,048 2,5 3 4,096 4,5 5 2,5 2,5 2,5
Начальный разброс (25°С), % 0,05 0,05 0,05 0,05 0,05 0,05 0,05 0,08 0,04
Макс. ТК, ppm/°C 3 3 3 3 3 3 3 3 1
Макс. ток нагрузки I OUT , мА 10 10 10 10 10 10 7 5 15
Собственный потребляемый ток I Q , не более, мкА 1000 1000 1000 1000 1000 1000 180 12 3000
Входное напряжение V IN , В 2,7...18 2,7...18 3,2...18 4,296...18 4,7...18 5,2...18 3,5...16,5 2,8...15 8...36
Размах напряжения шума eN (0,1...10 Гц), мкВ 6 7,5 9 12 13,5 15 4,5 8 1,5
Корпус 8-SOIC 8-SOIC, 8-TSSOP 8-DIP/SOIC
Рабочий температурный диапазон, °C -40 ...125 -40...85

Знакомство с семейством REF50xx

Как следует из таблицы 1, семейство REF50xx состоит из шести ИОН, различающихся уровнем выходного напряжения. Кроме того, каждый из этих ИОН доступен в двух исполнениях: повышенной точности (характеристики представлены в таблице 1) и стандартном. Точностные характеристики стандартного исполнения примерно в два раза хуже, чем у исполнения повышенной точности.

Все виды и исполнения ИОН доступны в 8-выводных корпусах двух типов: SO и MSOP. Расположение выводов представлено на рисунке 1а.

Рис. 1. Расположение выводов и упрощенная структурная схема ИОН REF50xx

Здесь же, на рисунке 1б, показана упрощенная структурная схема ИОН REF50xx.

Основой ИОН REF50xx является элемент бэндгап на напряжение 1,2 В. Это напряжение затем буферизуется и масштабируется до требуемого выходного уровня с помощью неивертирующего усилительного каскада, выполненного на основе прецизионного операционного усилителя (ОУ). Предусмотрена возможность влияния на коэффициент передачи этого усилительного каскада через вывод TRIM. Подключение потенциометра к этому выводу позволяет корректировать выходное напряжение в пределах ±15 мВ. Еще одной дополнительной возможностью REF50xx является возможность контроля температуры кристалла через вывод TEMP. Напряжение на этом выводе зависит от температуры (выражение этой зависимости показано на рисунке 1б). Важно обратить внимание на то, что функция контроля температуры больше подходит для контроля изменений температуры, чем ее абсолютного значения, т.к. погрешность измерения достаточно велика и составляет приблизительно ±15°С . Тем не менее, данная функция вполне применима в схемах температурной компенсации аналоговых каскадов. Выход TEMP является высокоомным, поэтому при работе со сравнительно низкоомными нагрузками потребуется его буферизация с помощью ОУ, обладающего малым температурным дрейфом. Производитель рекомендует использовать для этих целей ОУ OPA333, OPA335 или OPA376.

Обзор рабочих характеристик

Начальный разброс

Величина начального разброса демонстрирует, насколько может отклониться выходное напряжение ИОН относительно номинального значения сразу после подачи питания и при комнатной температуре (25°С). Как уже упоминалось, ИОН REF50xx выпускаются в двух исполнениях с начальным разбросом 0,05% (50 ppm) и 0,1% (100 ppm). Таким образом, начальный разброс даже стандартных исполнений отвечает требованиям систем с разрешающей способностью не меньше 12 бит и погрешностью преобразования 1 м.з.р. (для диапазона преобразования 2,5 В этим условиям эквивалентна разрешающая способность 610 мкВ, а у ИОН 2,5 В ±0,01% выходное напряжение отклоняется на величину не более 250 мВ). Если же задействовать возможность подстройки выходного напряжения, то, без учета прочих ограничений (температурный дрейф, шум), разрешающая способность может быть расширена до 16 бит.

Температурный дрейф (температурный коэффициент, ТК)

Данная характеристика показывает, насколько изменится выходное напряжение при изменениях температуры. ИОН REF50xx характеризуются очень малым ТК, который составляет 3 ppm/°C у исполнений повышенной точности и 8 ppm/°C у стандартных исполнений. Значение ТК 8 ppm/°C для ИОН напряжением 2,5 В означает, что при работе в температурном диапазоне шириной 100°С (например, -25...75°С) выходное напряжение ИОН будет изменяться на величину 2,0 мВ. Из этого следует, что ТК рассматриваемых ИОН вполне достаточно для обеспечения 10-битной разрешающей способности в широком диапазоне температур с погрешностью преобразования 1/2 м.з.р., а добиться более высокого разрешения можно только в более узком диапазоне температур. Для 16-битной системы с погрешностью преобразования 1/2 м.з.р. допускается относительное изменение напряжения всего лишь на 7,6 ppm (0,00076%). Таким образом, ИОН REF50xx смогут добиться такой точности лишь в полностью статических температурных условиях (отклонение не более 1...2°С). В 14-битной системе при прочих равных условиях REF50xx уже смогут обеспечить требуемую точность при колебаниях температуры до 10°С, в 12-битной - 40°С, в 10-битной - 160°С.

Выходное напряжение любого ИОН имеет шумовую составляющую. Шум, особенно низкочастотный, может затруднить измерение напряжения с высокой разрешающей способностью и/или с высоким быстродействием. Типичные значения размаха напряжения шума в диапазоне частот 0,1...10 Гц приведены в таблице 1 (распространяются и на стандартные исполнения). Данные значения вполне адекватны требованиям систем с разрешающей способностью до 14 бит включительно и погрешностью преобразования 1/2 м.з.р.

Нестабильность по входу и нагрузке

Данные характеристики позволяют оценить, насколько изменится выходное напряжение при колебаниях входного напряжения и тока нагрузки. Нестабильность по входу у всех ИОН REF50xx составляет не более 1 ppm/В, а по нагрузке - 50 ppm/мА (во всем рабочем диапазоне температур). Нестабильность по нагрузке можно также трактовать как выходное сопротивление ИОН, т.е. 50 ppm/мА означает, что выходное сопротивление ИОН на напряжение 2,5 В равно 2,5 × 50 =125 мОм.

Максимальный выходной ток

Несмотря на то, что ИОН REF50xx допускают протекание на выходе как втекающего, так и вытекающего тока величиной до 10 мА, желательно не использовать ИОН на пределе его возможностей. При работе с токами, близкими к предельным, не исключены самонагрев кристалла ИОН и возникновение вдоль микросхемы тепловых градиентов, негативно влияющих на точность и стабильность системы. Также важно заметить, что ИОН REF50xx оснащены защитой выхода от короткого замыкания с линиями питания (ток к.з. ограничивается на уровне 25 мА), что делает их более надежными приборами.

Диапазон напряжения питания

ИОН REF50xx рассчитаны на работу в достаточно широком диапазоне напряжения питания: от 2,7 В у самых низковольтных приборов до 18 В. Однако эти характеристики не следует трактовать как возможность работы от нестабилизированного напряжения, т.к. чтобы добиться прецизионных характеристик, ИОН лучше питать с выхода линейного стабилизатора напряжения, который примет на себя решение многих проблем, связанных с фильтрацией шума, подавлением переходных процессов на входе питания и др. Нижняя граница диапазона напряжения питания определяется еще одной характеристикой - минимально-допустимым перепадом напряжения. Его величина зависит от тока нагрузки и температуры, и при наихудших условиях (10 мА, 125°С) составляет чуть более 700 мВ. Если, исходя из озвученных выше рекомендаций, обеспечить работу с током, вдвое меньшим относительно максимального (т.е. 5 мА), то величина минимального перепада напряжения будет лежать в пределах 0,3...0,4 В в диапазоне температур 25...125°С, соответственно.

Потребляемый ток

ИОН REF50xx характеризуются достаточно большим потребляемым током, если сравнивать с конкурирующими технологиями FGA и XFET, что видно из таблицы 1. Столь высокое потребление свойственно другой прецизионной архитектуре: ИОН на стабилитроне со скрытым пробоем. Таким образом, применение REF50xx ограничено в приложениях с батарейным питанием, где требуется непрерывная работа ИОН. Однако и в приложениях с периодической работой ИОН существует еще одно ограничение - время установления после подачи питания. У REF50xx оно достаточно большое: при работе с нагрузочным конденсатором 1 мкФ типичное значение времени установления равно 200 мкс. Таким образом, эти ИОН больше подходят для работы в составе стационарной прецизионной аппаратуры, для которой более низкая себестоимость продукции более важна, чем характеристики энергопотребления.

Типичные применения и схемы включения

Как уже упоминалось, ввиду достаточно большого энергопотребления, но и сравнительно небольшой стоимости, ИОН семейства REF50xx идеальны для работы в составе высокоточного стационарного оборудования с разрешающей способностью преобразования до 16 бит, в т.ч.:

  • системы сбора данных;
  • автоматизированное испытательное оборудование;
  • устройства промышленной автоматики;
  • медицинское оборудование;
  • прецизионные контрольно-измерительные приборы.

Базовая схема включения, которая не предусматривает использование функций контроля температуры и подстройки выходного напряжения, показана на рисунке 2а. В этой конфигурации ИОН дополняется снаружи всего лишь двумя компонентами: блокировочный конденсатор на входе емкостью 1...10 мкФ и нагрузочный конденсатор на выходе емкостью 1...50 мкФ. Нагрузочный конденсатор должен относиться к типу «low ESR», т.е. обладать малым эквивалентным последовательным сопротивлением. При необходимости подстройки выходного напряжения, эту схему необходимо дополнить схемой на рисунке 2б. Важно понимать, что использование недорогого резистора типа «сermet» в качестве подстроечного может привести к ухудшению ТК ИОН, т.к. ТКС этого резистора превышает 100 ppm. Более предпочтительно использовать прецизионные проволочные или металло-фольговые типы подстроечных резисторов с 5%-ым допуском на сопротивление и ТКС менее 50 ppm.


Рис. 2. Схемы включения REF50x: базовая (а), с подстройкой выходного напряжения (б) и в составе 16-битной системы сбора данных: с однополярным (в) и двуполярным (г) входом

На рисунке 2 в можно увидеть пример построения входного каскада одноканальной 16-битной системы сбора данных с входным диапазоном 0...4 В . Здесь входной сигнал буферизуется прецизионным ОУ OPA365, включенным по схеме неинвертирующего усилителя-повторителя. Далее сигнал фильтруется RC-цепью и поступает на вход 16-битного АЦП ADS8326. Измерительный диапазон задается ИОН REF5040 на напряжение 4,0 В. Благодаря поддержке ОУ полного размаха напряжения на входе и выходе (тип rail-to-rail) и малому минимальному перепаду напряжения ИОН, схема способна работать от 5-вольтового источника питания.

Еще один пример, но уже для преобразования двуполярного сигнала в диапазоне ±10 В, показан на рисунке 2г. Схема отличается применением во входном каскаде инструментального усилителя INA159, который выполняет преобразование двуполярного диапазона ±10 В в однополярный 0...4 В. В качестве АЦП используется 16-битный АЦП с однополярным входом и частотой преобразования до 1 МГц ADS8330.
Выводы

Несмотря на то, что ИОН семейства REF50хх выполнены по архитектуре бэндгап, они обладают столь высокой прецизионностью, что их можно поставить в один ряд с такими лидирующими архитектурами, как стабилитрон со скрытым пробоем, XFET и FGA.

В семейство входят шесть ИОН на различные выходные напряжения в диапазоне от 2,048 до 5 В. Кроме того, каждый из этих ИОН доступен в двух исполнениях: стандартном и повышенной точности. Все ИОН поддерживают возможность подстройки выходного напряжения и контроля температуры.

Существенными недостатками ИОН являются их высокое энергопотребление (1 мА) и большое время установления после подачи питания (200 мкс), что ограничивает возможность их применения в критичных к уровню энергопотребления системах. Производитель указывает на возможность применения ИОН в системах с разрешающей способностью до 16 бит включительно.

Литература

1. REF5020, REF5025, REF5030, REF5040, REF5045, REF5050 - Low-Noise, Very Low Drift, Precision Voltage Reference//Data Sheet, Texas Instruments, lit. num. SBOS410, 2007.- 18p.

Наука начинается там, где начинают измерять. И как мы знаем, точность, это характеристика качества измерений, отражающая степень близости результатов измерений к истинному значению измеряемой величины. Иными словами, берясь за новый, или наоборот, видавший виды мультиметр или стрелочный вольтметр нас как минимум должен беспокоить вопрос, насколько точны его показания?

Это действительно важно, поскольку проводя измерения и наладку аппаратуры китайскими приборами мы должны быть уверены, что все сделали правильно. Поэтому проверить, насколько точно откалиброван измерительный прибор, задача первостепенной важности! Как же это сделать? Точные фирменные, и поверенные приборы стоят очень дорого, равно как и лабораторные эталоны напряжений для калибровки, да и в ВНИИФТРИ знакомые есть далеко не у всех. Однако выход есть. Можно взять достаточно точный источник опорного напряжения на ИМС измерить в нормальных условиях отдаваемое им напряжение на поверенном приборе (откалибровать) и приложить эту информацию к источнику напряжения для того, чтобы использовать в процессе проверки оборудования. Естественно, точность такого источника напряжения будет определяться множеством факторов, но главным образом температурой окружающей среды и точностью прибора которым проводились калибровочные измерения. Показания такого источника напряжения со временем дрейфуют крайне незначительно. Таким образом, наш источник опорного напряжение становится своего рода носителем информации о более дорогом и точном измерительном приборе. Задача сделать такой источник опорного напряжения, казалось бы, достаточно сложная, но Китай, как всегда, спешит на помощь. Мне удалось найти автономный источник опорного напряжения на микросхеме AD584 (Analog Devices) с программируемым выходом и 4 выходными напряжениями, которые прекрасно подойдут для проверки показаний и калибровки любого мультиметра. Точности такого источника для радиолюбительских целей более чем достаточно. Как говориться, точно в яблочко может, и не попадешь, но ногу себе точно не отстрелишь.

Немного о AD584

AD584 представляет собой прецизионный источник опорного напряжения с возможностью программируемого выбора из четырех разных выходных напряжений: 10.0 В, 7.5 В, 5.0 В и 2.5 В. Кроме того, возможно получение другого выходного напряжения, лежащего выше, ниже или между этими четырьмя стандартными значениями, с помощью внешнего сопротивления. Входное напряжение микросхемы может изменяться от 4.5 В до 30 В. Для точной подгонки напряжений и температурного коэффициента используется лазерная технология Laser Wafer Trimming (LWT).

В дополнение к программируемым выходным напряжениям AD584 имеет уникальный вывод стробирования, который позволяет включать и выключать прибор. Когда AD584 используется в качестве источника опорного напряжения в схеме питания, питание может быть выключено с помощью одного маломощного сигнала. В состоянии «выключено» ток потребления микросхемы уменьшается приблизительно до 100 мкА. В состоянии «включено» общий ток потребления, включая выходной буферный усилитель, составляет обычно 750 мкА.

Микросхема во всех отношениях замечательная и заслуживает пристального внимания. Почти все подобные источники опорного напряжения, используемые для калибровки и производимые в поднебесной сделаны как раз на AD584. Например, вот пара разных вариантов исполнения. Раз и два .

Подробнее об источнике опорного напряжения

Свой источник опорного напряжения для калибровки имеющихся у меня мультиметров я заказывал на AliExpress вот у этого продавца.

Поставляется источник без какой-либо упаковки и выглядит вот так.

В корпусе из оргстекла заключена плата с источником напряжения, «сервисом» и встроенном аккумулятором. Такую штучку можно взять с собой на рынок и проверять мультиметры при покупке, отбраковывая, что называется, не отходя от кассы.

На нижней крышке находится наклейка с измеренными напряжениями конкретно этого источника.

Измерения проводятся на дорогущем и навороченном прецизионном мультиметре Agilent 34401A (сейчас такой стоит около 1600$), что дает основание этим показаниям более-менее верить. Измерения проводятся при температуре 21 градус Цельсия.

Разберем корпус и внимательно изучим плату и компоненты на ней.

Аккумулятор. Приклеен к нижней крышке. Напряжение аккумулятора 3,7В.

Монтажная плата снизу.

Непосредственно источник опорного напряжения AD584KH.

Буква К, говорит о том, что этот прибор может работать при температурах от 0 до +70 градусов по Цельсию, а также указывает на класс точности. Есть и более экзотические варианты AD584, например, с буквой S, способные работать от -55 до +125 градусов по Цельсию. Мой экземпляр видимо был выдран из какой-то старой техники, о чем говорят боевые шрамы на его корпусе. Значит, скорее всего, это не подделка.

Как видно на фото, закреплен источник на плате особой конструкции. Скорее всего это сделано, для термостатирования, дабы нагрев платы не сильно влиял на характеристики самого источника.

Здесь же на плате находится миниатюрный импульсный повышающий преобразователь напряжения.

Ясное дело, если питать наш источник от слабенького аккумулятора, для формирования напряжения в 5 В и выше, требуется напряжение не ниже 13 В. Преобразователь построен на микросхеме AP34063. В моем экземпляре кривые руки китайцев при сборке повредили индкутивность, но на работу преобразователя и источника это не влияет.

Выходные напряжения источника выбираются последовательно кнопкой и выбранное значение обозначается соответствующим светодиодом. Очень удобно. Включается и выключается прибор длительным нажатием на эту же кнопку.

Сзади расположилось гнездо для подключения зарядного устройства и внешнего питания.

Практика использования

В моей скромной лаборатории постоянно используются три мультиметра, это два переносных, заслуженный и проверенный временем Mastech MS8269 и UNI-T UT61E, а также один стационарный Vichy VC8145.

Кто-то спрашивал, чем я пользуюсь при работе в ремонте и модернизации радиостанций? Вот этим вот и пользуюсь. Проверка всех трех мультиметров показала, что с ними все в полном порядке и подстройка им если и нужна, то весьма незначительная.

Mastech + UNU-T (hold). В рамочке напряжение источника.

Vichy. В рамочке напряжение источника.

Минусы

Что не понравилось, так это то, что отверстия для щупов сквозные! И кроме мусора внутрь корпуса прибора могут попасть любые металлические предметы. А уж о том, что самим щупом можно невзначай закоротить схему внутри источника я уже и не говорю.

Update 29.12.15

Сегодня удалось получить доступ к поверенному (правда поверка уже просрочена на пару месяцев) к высокоточному мультиметру Agilent 34461A. Это следующая более современная модель выпущенная после Agilent 34401A.

Собственно сертификат о калибровке (конверт вскрыть не дали, но не думаю, что там лажа).

И результаты измерений.

Как видим, отличие только в 4 знаке после запятой, да и разрыв в заявленном и фактически измеренном очень мал. Это значит, что написанному на нашей волшебной коробочке можно верить!

Итог

В целом, для калибровки радиолюбительской аппаратуры такой источник можно смело рекомендовать к использованию. Он компактный, откалиброван по точным приборам, может автономно работать от встроенной АКБ, это значит, что его можно использовать и в полевых условиях. В общем, как говориться, маст хэв для любителей точных измерений!

Известные отечественные интегральные источники опорных напряжений (ИОН) заметно уступают зарубежным, которые отличаются большим разнообразием, включая высокоточные малогабаритные, а также мощные как одной полярности выходных напряжений, так и двух полярностей. Широко распространены трехвыводные стабилизаторы, имеющие только вход, выход и вывод на общую шину. Существуют преобразователи батарейного питания в стабилизированное напряжение (в том числе и более высокое, чем входное), экономичные преобразователи - в повышенное и пониженное напряжение, преобразователи положительного напряжения - в отри нательное, и т. д. .

Для управления СУЛИ наибольший интерес представляют прецизионные ИОН. Широко доступны для потребителя источники опорного напряжения,

гарантирующие долговременную нестабильность не более 2 * 10 -5 за 10 3 ч

и температурный дрейф не более 3-КГ 6 / К (/Ш780?А Г) либо соответственно

5 10 -5 за 10 3 чи 1...2,5 10" 6 /АТ (ЯЕЛ02) .

Прецизионные ИОН следует применять для формирования напряжений, которые определяют режим работы схемы (опорное напряжение для АЦП, задание рабочей точки, регулировка напряжения и т. п.). Применение для этих целей напряжений питания блока некорректно. Поясним эту мысль. В последнее время широко распространены магистрально-модульные системы, в которых устройство состоит из стандартного корпуса с отдельными модулями. Этот корпус снабжен источником питания и шинами для передачи сигналов и питающих напряжений на модули и обратно. Разбиение системы на модули осуществляется из соображений функциональной законченности (что позволяет их унифицировать) и минимизации количества передаваемых сигналов между ними. Например, могут быть выделены в отдельные модули источники различных сигналов, ЦАП, АЦП, синхронные детекторы, регуляторы и т. д. Такое разбиение позволяет быстро создавать новые системы из набора стандартных модулей, а также модифицировать созданные системы, перерабатывая лишь ее отдельные части. Как правило, для питания модулей используют лишь низкие напряжения (от 6 до 24 В обеих полярностей), что обеспечивает безопасность работы с такими сис темами и простоту их отладки для модификации и испытания вновь созданных систем без дополнительных специальных мер: работать с печатной платой, на которую подведено нс более ±24 В, совсем нс то же самое, что настраивать устройство, питающееся непосредственно из сети ~220 В. Источники питания при этом едины для всей системы, расположены они непосредственно в корпусе (как в системе КАМАК) или в отдельных вставляемых модулях (как в системе МиШ-ВЦЗ). Эти напряжения стабилизируются. Поэтому велик соблазн для разработчиков системы использовать эти напряжения без дополнительной стабилизации. Для питания цифровых микросхем (кроме ЭСЛ) и некоторых аналоговых микросхем, таких как операционные усилители, ключи, УВХ, генераторы, таймеры и т. п., стабильность этих напряжений может оказаться достаточной. Однако некоторые узлы требуют особо высокой стабильности (точности) формирования их выходных параметров. Прежде всего это относится к опорным напряжениям для АЦП, ЦАП, компараторов, питания измерительных мостов, стабильных генераторов, стабильных таймеров, микросхем серии ЭСЛ и т. д. Рассмотрим, например, систему, содержащую два модуля, как показано на рис. 4.41.

Даже если блок питания системы формирует питающее напряжение с высокой точностью, проводники, доставляющие это напряжение в модули, обладают ненулевым сопротивлением. В этом случае включение в блок дополнительного узла или изменение потребляемой мощности любого другого узла в блоке может вызвать изменение напряжения питания и повлиять на работу данного узла. Перестановка узла в другой идентичный блок также в этом случае потребует новой настройки узла или даже всей системы. Источник опорного напряжения (ИОН) непосредственно на плате по месту потребности стабильного напряжения устраняет эту проблему.

Рис. 4.41.

Отечественные источники опорных напряжений представлены серией КР142 и некоторыми другими сериями, содержащими источники на фиксированные положительные напряжения: КР142ЕН5А(Б, В, Г), КР142ЕН8А(Б, В, Г), КР142ЕН9А(Б, В, Г), источники отрицательного напряжения КР142ЕН10, регулируемые однополярные источники КР142ЕН12, регулируемые двухполярные источники КР142ЕН6, и т. д. . Основные параметры отечественных ИОН представлены в табл. 4.10 и 4.11.

Таблица 4.10

Характеристики интегральных стабилизаторов

Тип стаби- лизатора

№х- - ^вых} шт

Лют

Окончание табл. 4.10

Тип стабилизатора

№х- - ?4ых} піт

Лют

2Х(14,5... 15,5)

2Х(14,5... 15,5)

Таблица 4.11

Характеристики популярных интегральных стабилизаторов

Тип сгабили- затора

{^вх- - ^вых} П11П

Лют

Таблица 4.12

Параметры микросхемы Л/)780

Окончание табл. 4.12

Прецизионный источник опорного напряжения Л?)780 позволяет задавать опорное напряжение с высокой точностью и измерять температуру. Эта микросхема может применяться для создания прецизионных источников тока полупроводникового лазера и в системах термостабилизации лазеров всех типов. Ее электрические параметры даны в табл. 4.12.

Для нормальной работы АЦП МК необходим источник опорного напряжения (ИОН). Если использовать внутренний ИОН, то могут возникнуть проблемы с его низкой температурной стабильностью и большим технологическим разбросом номинального напряжения. Для точных измерений (в том числе с нестандартными опорными напряжениями) практикуют подключение внешнего ИОН к выво-ду KREF МК. Состоять он может из дискретных элементов (Рис. 4.7, а...и) или из интегральных микросхем (Рис. 4.8, а...к).

Рис. 4.7. Схемы подключения внешних ИОН на дискретных элементах {начало):

а) МК(1) использует для своих измерений внутренний ИОН. Его выходное напряжение KRRF является внешним ИОН по отношению к МК(2). Достоинство — синхронизация измерений;

б) VD1 — это прецизионный стабилитрон «Shunt Voltage Reference» (фирма Analog Devices) с точностью поддержания выходного напряжения ±0.1%. Фильтр R2, C1 снижает ВЧ-помехи. При переходе на повышенное питание +5 В необходимо заменить резистор R1 (2.94 кОм). Для снижения потребляемого тока можно увеличить сопротивление резистора R1 до 34.8...41.2 кОм;

в) VD1 — это широкодиапазонный стабилитрон «Adjustable Voltage Reference» фирмы National Semiconductor. Резистор RI задаёт ток через VDI в пределах 0.01...20 мА. Если вместо LM385-2.5 поставить LM4040-4.1 и увеличить резистор до 10 кОм, то KREF станет равным +4.096 В;

г) регулируемый ИОН с плавной юстировкой напряжения многооборотным резистором R3

д) VD1 — это трёх вы вод ной стабилитрон «Programmable Shunt Regulator» (серия «431»). Двухполюсное включение VD1 определяет опорное напряжение +2.5 В (или +1.25 В в серии «1431»);

е) опорное напряжение +4.9 В поступает с выходной линии МК. Такое включение полезно при тестах (НИЗКИЙ/ВЫСОКИЙ уровень) и для удобства разводки печатной платы;

Рис. 4.7. Схемы подключения внешних ИОН на дискретных элементах (окончание):

ж) регулируемый ИОН на основе трёхвыводного стабилитрона VD1 серии «431». Опорное напряжение определяется по формуле KREF[B] = 2.5-(1 + Я,[кОм]/Я2[кОм]);

з) напряжение KREF близко к напряжению питания. Из особенностей — двухступенчатая фильтрация помех при помощи элементов L1, C1 и RI, С2, СЗ;

и) на вход VREF подаётся опорное напряжение, которое чуть больше напряжения питания Усс МК. Это обеспечивает широкий динамический диапазон измерений, но надо следить, чтобы разница между КЕРи Усс не превышала 0.2 В. Если поставить стабилитрон VDI LM4040DIZ-5.0, то опорное напряжение уменьшится до +5.0 В, а точность установки улучшится с 5 до 1 %.

Рис. 4.8. Схемы подключения внешних ИОН на микросхемах (начало):

а) использование низковольтного стабилизатора напряжения DA1 в качестве ИОН;

б) точность установки опорного напряжения составляет 2.4% (5.00 В ± 120 мВ). Замена стабилизатора DAI — 78L05. Конденсаторы C1 и С2 необходимо располагать возле выводов DA /;

в) точность установки опорного напряжения DA 1 составляет 0.05% (5.00 В ± 2.5 мВ), температурная стабильность 5 ррт/°С (25 мкВ на один градус);

г) двухступенчатый стабилизатор (VDI, DAI). Точность установки опорного напряжения DAI (фирма Intersil) составляет 0.01% (5.00 В ± 0.5 мВ), температурная стабильность 5 ррш/°С;

Рис. 4.8. Схемы подключения к МК внешних ИОН на микросхемах (окончание):

д) плавно регулируемый ИОН в пределах 0...+3 В. Замена стабилизатора DA1 аналогичным, нос другим выходным напряжением (+2.5...+5 В), задаёт верхний предел регулирования;

е) повышенная стабильность ИОН благодаря генератору тока на микросхеме DA1. Ток через трёхвыводной стабилитрон VDI (1...8 мА) определяется по формуле /[мА] = 1.25 /[кОм];

ж) программно регулируемый ИОН 0...+5 В на микросхеме DA1 фирмы Microchip. Функционально это дискретный 6-битный переменный резистор с крайними выводами «А», «В» и средним выводом «W». Сопротивление от 2.1 до 50 кОм. Буферным повторителем служит ОУ DA2;

з) оперативная смена двух напряжений. Высокоточный ИОН на микросхеме DA1 (фирма Analog Devices) выдаёт напряжение +2.5 или +3 В в зависимости от положения перемычки SL Фильтр LI, CI снижает помехи по питанию;

и) вывод KREF МК соединяется с линией питания, которая и служит внешним ИОН. Напряжение питания регулируется резистором R3. Значение +5.12 В выбрано не случайно. Это сделано для того, чтобы при 10-битном АЦП МК цена одного деления составляла ровно 5 мВ;

к) регулируемый ИОН с повышенной нагрузочной способностью на основе повторителя DA1. Выходное напряжение +2.5 В может использоваться для средней точки других ОУ.

Читайте также: