Как образуется гумус, полезные свойства гумуса для почвы. Что такое гумус? Что такое гумус почвы: состав и свойства удобрения Способы повышения урожайности

Многие садоводы слышали о таком удобрении, как гумус, но мало кто точно знает о способах использования такой подкормки на приусадебном участке. Благодаря содержанию в гумусе различных полезных микроэлементов он широко используется садоводами, что позволяет существенно улучшить урожайность, улучшая состояние почвы на участке.

Вконтакте

Одноклассники

Определение понятия

Гумус - это целый комплекс азотных соединений, возникших благодаря минерализации различных растительных остатков под воздействием натуральных ферментов. Если говорить упрощенно, то это перегной, который получен за счёт длительной переработки в почве различной растительности. Такое удобрение отличается великолепной эффективностью, оно содержит различные азотные соединения, которые необходимы для роста и плодоношения овощам и фруктам.

Образование гумуса было бы невозможным без различных микроорганизмов и дождевых червей, которые обитают в почве. Благодаря жизнедеятельности дождевых червей такой субстрат обогащается всевозможными полезными веществами, приобретая свою особую ценность. Образование гумуса в компосте происходит при определенных условиях, в том числе минимальном доступе кислорода и высоких показателях влажности. Именно поэтому, если вы самостоятельно готовите гумус в компостной яме, ее необходимо обязательно сверху засыпать слоем земли толщиной в 50−70 сантиметров.

Такое натуральное удобрение будет содержать различные гуминовые кислоты, которые необходимы для полноценного развития различных растений. А также в субстрате содержатся фульвокислоты, которые в природе встречаются крайне редко, поэтому получить такой микроэлемент из обычного перегноя и перепревшего навоза будет затруднительно.

Такой субстрат - это не только великолепное удобрение, но и своего рода фильтр, который адсорбирует из почвы вредные соединения. Поэтому применение гумуса на участке позволит вырастить экологически чистый урожай с великолепными вкусовыми характеристиками. Подобное в особенности ценится теми садоводами, которые ведут исключительно чистое экологичное сельское хозяйство без использования какой-либо химии на приусадебном участке.

Определить gumus можно будет по характерному тёмно-коричневому цвету. Определение гумуса в почве может осуществляться по запаху, такое удобрение имеет запах перепревшей листвы и земли. Впрочем, в зависимости от преобладающей земли гумус может иметь различную влажность и отдавать торфом или перегноем.

Классификация почвы

В зависимости от содержания в почве такого органического субстрата принято выделяют четыре типа грунта:

  • Малогумусные.
  • Умеренногумусные.
  • Среднегумусные.
  • Гумусные почвы.

Первый тип земли содержит гумусовый слой с не более чем 1% от такого питательного субстрата. А вот в гумусных грунтах количество такого переработанного перегноя может достигать 5%, что позволяет обеспечить великолепную урожайность выращиваемых огородных культур. Отметим, что в черноземе количество питательного субстрата достигает 15 процентов.

Использование гумуса

Состав гумуса включает различные микроэлементы и азот, поэтому такое удобрение пользуется популярностью в садоводстве, позволяя улучшать показатели урожайности на приусадебном участке. Использование таких добавок позволяет существенно улучшить структуру почвы, полностью изменяя ее химический состав.

Такая подкормка может вноситься садоводом в почву извне, так и образовываться в земле естественным образом. Повысить содержание gumus в почве можно следующими четырьмя способами:

  • На регулярной основе заделывать питательный субстрат в почву.
  • Создавать собственные запасы такого удобрения.
  • В почве создаются условия для развития микроорганизмов и червей.
  • Учитывают севооборот, правильно чередуя выращиваемые культуры на грядках.

Самостоятельно получить gumus на приусадебном участке не составит труда. Необходимо вырыть большую по размерам яму, куда складывают различные пищевые отходы, выкорчеванные сорняки, опавшую листву и отходы урожая. В скором времени тут образуется компост , который будет переработан червями и различными почвенными микроорганизмами. В последующем можно вносить переработанный субстрат в почву на грядках, существенно улучшая показатели плодородности грунта.

Непосредственно заделывание гумуса в землю не представляет сложности. Субстрат необходимо равномерно заделать в верхний слой грунта, расходуя приблизительно на квадратный метр грядки около 5 килограмм такого питательного субстрата. Отличные результаты показывает использование этого природного удобрения при выращивании плодовых деревьев и кустарников . Поэтому можем порекомендовать вам использовать gumus при посадке многолетних растений и деревьев, улучшая характеристики почвы и обеспечивая плодовые культуры необходимым им питанием.

Гумус - это органический субстрат, содержащий большое количество азота и других полезных для растений микроэлементов. Образуется такой субстрат путем естественной переработки почвенными организмами различных растений и биологических остатков.

Просмотры: 4969

18.10.2017

Всем известно, что плодородный чернозем чрезвычайно богат гумусом (лат. «humus » - «земля, почва» ). Он образуется в результате преобразования животных и растительных органических остатков в стабильные питательные соединения, которые длительное время сохраняются в почве, способствуя росту и развитию растений.

В гумусе находится все необходимое для осуществления процесса фотосинтеза, поэтому он является своеобразным «хлебом» для растительных культур. Чем выше процентное содержание гумуса в почве и чем мощнее плодородный слой земли, тем лучше становится водный, воздушный и тепловой режимы грунта, тем благоприятнее среда для живущих в нем полезных микроорганизмов и бактерий, тем активнее происходит преобразование нитратов в углекислоты, тем больше вырабатывается полезных микро и макроэлементов. По этой причине сохранение и приумножение запасов гумуса является одной из приоритетных задач земледельцев.



В гумусе сконцентрировано девяносто восемь процентов всех запасов почвенного азота, шестьдесят процентов фосфора и восемьдесят процентов калия, поэтому природная сельскохозяйственная технология не дает сбоев.

Почва считается плодородной и благоприятной для выращивания растений, если содержание в ней гумуса составляет от трех до пяти процентов. Больше всего его содержит чернозем, структура которого формировалась на протяжении многих веков. Именно в черноземе происходит наибольшая активность микробов и бактерий, в нем же, как правило, массово обитают дождевые черви, которые способствуют образованию гумусовых соединений и играют важную роль в почвенных процессах.

В составе почвенного гумуса выделяют специфическую часть (85 - 90 % всего гумуса), представленную гумусовыми веществами, и неспецифическую часть (10 - 15%), представленную негумифицированными органическими веществами. Последние по своему составу могут, быть весьма разнообразны и включать: азотистые соединения (белки, ферменты, аминокислоты), углеводы (моносахариды, олигосахариды, полисахариды), липиды (жиры, воски, фосфолипиды), дубильные вещества (таннины, галловая кислота, флобафены и другие полифенолы), органические кислоты; кроме того, лигнины, смолы, спирты, альдегиды.

Гумусовые вещества почвы представлены гуминовыми и фульвокислотами, а также гуминами.

Как повысить содержание гумуса в почве?

Во-первых, следует каждый год компенсировать потери гумуса, израсходованные на выращивание культурных растений. Для этого аграриям необходимо ежегодно производить возврат органических веществ в виде удобрений назад в почву. В правильно подготовленном удобрении содержатся все необходимые соединения и элементы, призванные обеспечивать растениям полноценное и сбалансированное питание.

В качестве органики аграрии чаще всего применяют перегнивший навоз или измельченную солому, которая позволяет ежегодно увеличивать количество гумуса до семисот (!) килограмм на гектар площади.


Во-вторых, следует помнить, что внесение органики в почву – это лишь половина дела, поскольку земледельцам необходимо еще создать условия, при которых элементы питания будут легко усваиваться растениями. Для этого органические удобрения необходимо забороновать, чтобы они стали составляющей верхней плодородной части земли.


В-четвертых, для повышения уровня гумус, аграриям следует использовать растения – сидераты или так называемое «зеленое удобрение», то есть культуры, которые растут в качестве смежных и обладают при этом способностью усиливать действие других удобрений и ускорять микробиологические процессы в грунте. Как правило, сидерация представляет собой процесс выращивания растений с целью их последующей запашки. Для этой цели чаще всего применяют люпин (запашка этого зеленого удобрения равноценна внесению семидесяти (!)тонн навоза в расчете на один гектар площади) или другие бобовые культуры.

Люпин насыщен белковыми веществами и является превосходным источником биологического азота. В качестве сидеральных культур земледельцы используют также такие растения как: сераделла, клевер, донник, белая горчица, рожь и гречиха.


В-пятых, почву необходимо систематически разрыхлять, производя регулярное культивирование или мульчировать, применяя для мульчи торф, солому или отходы деревопереработки.

Аграриям следует также помнить о том, что применение традиционной отвальной технологии обработки земли постепенно ведет к снижению почвенного плодородия за счет интенсивного разложения органических веществ, чрезмерного распыления почвы и разрушения ее структуры. Поэтому в настоящее время все большую популярность у земледельцев завоевывает способ нулевой обработки почвы, который называется «No-Till» технологией, что означает «без рыхления, без обработки».

Данный способ обработки почвы позволяет не только сохранить гумус, но увеличивает скорость его образования.

Существует еще один метод безотвальной обработки земли, который имеет как ярых сторонников, так и противников – это способ обработки почвы с помощью плоскорезов, также создающий благоприятные условия для сохранения структуры гумуса.

На самом деле уровень плодородия почвы можно сравнить с депозитным счетом в банке. Если все деньги снять одним махом, доход сразу прекратится. Ровно также происходит и в агрономии. Если почву не подкармливать - это в итоге приведет к ее истощению и, соответственно снижению урожайности в будущем.


В любом случае обеспечение положительного баланса гумуса, а также сохранение и постоянное увеличение его запасов является гарантией получения стабильно богатого урожая.

Вопрос «Понятие о гумусе. Состав гумуса, свойства гумусовых веществ. Фракционный состав гумуса и его качество. Содержание и состав гумуса в различных типах почв»

Гумус – сложный комплекс органических соединений, который образуется в результате разложения и гумификации органических остатков.

Значение гумуса:

Является источником питания растений. При разложении образуются нитраты, фосфаты, сульфаты и др.;

Гумус – стимулятор роста и развития растений и корневой системы;

Улучшает азотное и кислородное питание, что способствует мощному развитию корней;

Огромная роль в структурообразовании, что обуславливает водно-воздушные свойства;

Обладает высокой поглотительной способностью и предотвращает от вымывания различные соединения, что дает возможность обменным реакциям при внесении удобрений;

Гумус увеличивает буферность почвы;

Огромная роль в формировании почвенного профиля.

За последние 50-80 лет в Центрально-Черноземной области потери гумуса составляют 20-30 %; на Украине- 20 %; в Бразилии – 3-4 %; в США – ниже естественного уровня. В нашей зоне в пахотном слое ежегодно теряется 500-800 кг\га гумуса (около 1% за 50 лет). Потери 1 % гумуса приводит к потере урожая до 2 ц\га. Поэтому, чтобы управлять процессами гумусообразования необходимо знать его образование, состав, качество и др.

Источниками гумуса являются остатки высших растений, низших, микроорганизмов и животных, населяющих почву.

Основную роль в образовании гумуса играют микроорганизмы. Растительные остатки под влиянием ферментов, микроорганизмов, кислорода, углекислого газа, воды разлагаются до промежуточных продуктов (белки – в аминокислоты, жиры – в глицерин, лигнин – в фенолы). Затем промежуточные продукты под воздействием тех же факторов разлагаются с одновременным протеканием 3-х процессов:

1) минерализация, которая приводит к созданию более простых соединений (аммиак, кислород, углекислый газ и др.), которые вымываются из почвенного профиля или используются растениями;

2) микробный синтез происходит под влиянием гетеротрофных организмов, которые используют органические соединения для построения своей плазмы;

3) гумификация – сложный процесс синтеза, устойчивых против разложения перегнойных веществ.

Состав гумуса

Гумус состоит из ГК (ульминовых), ФК (креновых и апокреновых), негидролизуемого остатка (гумина).

ГК – это группа высокомолекулярных азотсодержащих кислот циклического строения кислой природы. Они имеют черный или темно-бурый цвет, нерастворимые в воде и кислотах, но растворимы в слабых щелочах. Элементарный состав ГК представлен С (52-62 %), О 2 (31-39 %), Н (2,5-5,8%), N (2,6-5,1 %). ГК содержат в себе карбоксильную, метоксильную и гидроксильную группы. Благодаря этим группам ГК обладают высокой поглотительной способностью обменивать активные свои группы на катионы. С катионами ГК дают соли – гуматы. Одновалентные катионы создают растворимые в воде соли, способные вымываться. С 2-х и 3-х валентными катионами – нерастворимые соединения, вызывают коагуляцию, участвуют в формировании водопрочной структуры. Е=250-700 мг-экв\100 г почвы.

ФК - это группа высокомолекулярных азотсодержащих кислот циклического строения кислой природы. В отличие от ГК меньше содержат С и больше кислорода. Элементарный состав ФК представлен С (44-50 %), О 2 (42-48 %), Н (4-6 %). Они имеют соломенно-желтый цвет, растворимые во всем. В почвах находятся в свободном состоянии и в подвижном и связанных с несиликатными соединениями. Имеют функциональные группы. С катионами образуют соли – фульваты, которые растворимы в воде независимо от валентности.

Гумины – это те же ГК и ФК, но прочно связанные с минеральной частью почвы. Могут растворяться в сильных кислотах.

По соотношению С гуминовых кислот к С фульвокислот судят о качестве гумуса.

В таежно-лесной зоне, северной части лесостепи Сгк\Сфк<1, в южной части лесостепи, степи соотношение равно 1 или более 1, у черноземов – около 2, в пустынях, полупустынях и засоленных почвах – менее 1. В нашей зоне ФК представлены низкомолекулярными соединениями ГК, которые не вызывают агрессивного разрушения минеральной части почв.

Фракционный состав гумуса.

Образуется 1-ая фракция гуминовых кислот (ГК) и фульвокислот (ФК), связанных с несиликатными формами полуторных окислов (Fе 2 О 3), т.е. это наиболее подвижные соединения в почве.

2-ая фракция ГК и ФК, связанная с кальцием, происходит коагуляция, это более устойчивая фракция гумусовых кислот.

3-я фракция ГК и ФК связана с устойчивыми глинистыми соединениями в виде полуторных окислов алюминия и железа (45-60 %).

ФК образуют фракцию 1а – это свободная, самая агрессивная фракция гумусовых кислот (рН=2,6-2,8). Она создает подзолистые почвы. Т.е. плодородие почвы зависит от качественного состава гумуса. У черноземов преобладает 2-ая и 3-я фракции.

На процессы гумификации влияют следующие условия:

1) водно-воздушный и тепловой режимы. Разложение органических остатков и образование гумуса происходит лучше всего при температуре 25-30 0 и влажности почвы 60-80 % ПВ.

2) Состав и характер растительных остатков.

3)Видовой состав и интенсивность жизнедеятельности микроорганизмов.

На севере видовой состав микроорганизмов однообразен и немногочислен. С продвижением на юг температурный режим усиливается, интенсивность микроорганизмов, количество и видовой состав.

4) Свойства самой почвы.

Подзолистые и дерново-подзолистые почвы – от 0,5 до 2,5-3, %

Серые лесные почвы – 3-4 до 7-8 %

Черноземы – 5-12 %

Каштановые – 2-5 %

Красноземы до 5-6 %

Вопрос 2 «Структура и структурность почвы. Образование структуры. Пути разрушения и восстановления структуры почв. Факторы образования структуры. Показатели, характеризующие агрономически ценную структуру»

1. Совокупность агрегатов различной величины, формы и качественного состава называют почвенной структурой.

Способность почвы распадаться на агрегаты называют структурностью.

Размеры, формы и свойства агрегатов зависят от условий почвообразования и характерной для каждого почвенного типа, а иногда отдельных горизонтов. Для черноземов – зернистая структура. Для солонцов горизонт В имеет столбчато-призматическую структуру, для серых лесных почв горизонт А 2 В 1 – ореховатая, подзолистые почвы – верхние горизонты бесструктурные, а горизонт В – имеет комковатую структуру.

Структура играет огромную роль в плодородии почв (Докучаев, Костычев, Тюллин, Антипов-Каратаев и др.).

Качественная оценка структуры определяется ее размерами, механической прочностью и пористостью. Агрономически ценная структура характеризуется: 1) размерами – от 0,25 до 10 мм или до 7 мм – для зоны с дефицитом влаги. Эту структуру называют мезоструктура. Макроструктура имеет размеры более 10 (7) мм, а микроструктура – менее 0,25 мм. По этим величинам можно рассчитать коэффициент структурности: К = количество мезоструктуры \ сумма макро- и микроструктуры; 2) Механическая прочность, т. е. агрегаты и комочки не должны разрушаться при многократных обработках орудиями; 3) Водопрочность – способность агрегатов противостоять разрушительным действиям воды; 4) Пористость – чтобы проникала и удерживалась в капиллярах влага. Пористость должна быть не более 45-50 %. И считают агрономически ценную структуру крупнопористую, т. к. тонкие поры снижают пористость до 30-40 %. Агрегаты находятся в плотной упаковке, куда трудно проникает вода и воздух.

Агрономически ценная структура оказывает положительное влияние на свойства и режимы почвы. Определяет физические свойства (плотность, пористость); воздушный, водный, тепловой, О-В и питательный режимы. Структура определяет физико-механические свойства почвы – это связность, коркообразование, трение при обработке и противоэрозионную устойчивость почвы.

Структура образуется в результате сложных биологических и физико-химических процессов. Условиями образования структуры являются 2 противоположно направленных процесса – это: 1) соединение или склеивание частиц почвы между собой; 2) разъединение отдельных участков склеенной массы почвы с образованием комочков не связанных между собой.

Если действует только один из процессов, то образуется бесструктурная почва. Первый процесс образует слитную массу, а второй процесс вызывает дробление, диспергирование почвы.

Чтобы образовалась структура, необходимы следующие факторы: 1) наличие в почве клеящих веществ, т. е. образование органических и минеральных коллоидов (илистые частицы и гумус). Органические соединения в 12 раз склеивают частицы прочнее, чем илистые; 2) наличие деятельного или свежего перегноя; 3) Качество гумуса с преобладанием гуминовых кислот, которые создают пористый характер почвенной массы. Преобладание фульвокислот образуют слитную массу; 4) Наличие цементирующего катиона в почве Са, который с гумусом образует необратимые формы соединений. Цементирующим фактором структуры являются полуторные окислы алюминия и железа (причем железо обладает большей прочностью); 5) периодическое промораживание и высушивание почвы, что вызывает обезвоживание коллоидов и необратимую коагуляцию; 6) Давление, которое возникает между верхними и нижними слоями; 7) большую роль в оструктуривании играют многолетние и однолетние травы, которые с одной стороны расчленяют слитную массу корнями, а с другой стороны отмирая обогащают деятельным гумусом и количество биомассы поступает больше, чем от культурных растений; 8) роль червей.

Причины разрушения структуры: 1) в результате механического воздействия многократных обработок почвы, движения сельхоз машин; 2) биологическим путем, за счет жизнедеятельности гетеротрофных микроорганизмов, которые используют для своего питания углерод органических соединений, обедняют клеем веществом; 3) физико-химические процессы в почве при замене 2-х и 3-х валентных солей одновалентными, которые вызывают пептизацию и разрушение.

Пути восстановления структуры: 1) рациональная и своевременная обработка почвы с учетом свойств и особенностей ее; 2) прекращение бессменного выгона скота на поля; 3) сбалансированное применение органических и минеральных удобрений; 4) введение в севообороты злаково-бобовых и многолетних трав. Многолетние травы в поверхностном слое оставляют после себя 4-18 т на га пожнивных и корневых остатков; 5) агрономические приемы (известкование, гипсование); 6) искусственное структурообразование, которое основывается на полиакритных полимерах.

Вопрос «Понятие о поглотительной способности почв. Виды поглотительной способности почв и их характеристика»

Поглотительная способность почв – это способность почвы поглощать различные вещества (твердые, пары воды и газы) из раствора, проходящего через нее и удерживать их.

Это свойство почвы играет большую роль в питании растений и превращении внесенных удобрений. Благодаря поглотительной способности почва удерживает легкорастворимые соединения, элементы питания, гумусовые вещества. У разных почв поглотительная способность различна и зависит от содержания коллоидов. Связь между ними прямая.

К.К. Гедройц различал пять видов поглотительной способности:

1) биологическая

2) механическая

3) физическая

4) химическая

5) физико-химическая ли обменная

Биологическая поглотительная способность связана с наличием в почве корней живых растений и микроорганизмов, которые избирательно поглощают из почвенного раствора необходимые элементы питания и переводят их в органические соединения своих тел. Тем самым эти питательные вещества предохраняются от вымывания из почвы (кальций, калий, нитраты, фосфаты и др.) и накапливаются в почве. После отмирания растений происходит постепенная их минерализация, содержащиеся в них питательные элементы переходят в доступную форму для новых поколений растений и микроорганизмов.

По мнению Ковды растения на каждом гектаре поглощают и возвращают в почвы сотни килограммов химических элементов. Емкость поглощения корней растений колеблется от 10 до 80 мг-экв\100 г почвы. Бобовые растения более активные сорбенты, чем злаки.

Биологическое поглощение зависит от: аэрации, влажности, состава органического вещества, служащего энергетическим материалом для микроорганизмов.

Биологическим путем поглощаются катионы и анионы. Из катионов – это калий, сера, кальций, железо и др. Из анионов – хорошо поглощаются РО 4 кислот, частично – сульфаты и карбонаты, а хлориды и нитраты вообще не поглощаются без живых организмов. Биологическое поглощение играет особенно большую роль в превращении нитратных форм азота в почве (удобрения, содержащие нитратную группу лучше вносить весной – натриевая, калиевая, аммиачная, кальциевая селитр). А удобрения, содержащие хлор лучше вносить осенью (хлористый аммоний).

Т.о., в зависимости от конкретных условий биологическое поглощение питательных веществ микроорганизмами может иметь положительное и отрицательное значение. Например, в паровых полях протекает процесс нитрификации, т.е. образование нитратного азота и этот азот не закрепляется в почве и в последствии вымывается. Но этими процессами можно регулировать – известкование кислых почв, внесение органических и минеральных удобрений и др.

Механическая поглотительная способность – это способность почвы как пористого тела задерживать мелкие частицы из фильтрующихся суспензий. Задерживаются те частицы, диаметр которых больше, чем диаметр пор почвы. Чем тяжелее почвы по гранулометрическому составу, тем тоньше поры и выше механическое поглощение. Оно предотвращает от вымывания из почвы илистые и коллоидные частицы. Это поглощение способствует образованию новых почв (пойменных).

Отрицательной значение – это заиливание почвенных пор, что ведет к заболачиванию.

Механически в почве закрепляются нерастворимые в воде удобрения и мелиоранты (фосфоритная мука, известь, гипс).

Физическая (молекулярная) поглотительная способность – это положительная или отрицательная адсорбция частицами почвы целых молекул растворенных веществ.

Она зависит от суммарной поверхности твердых частиц. Чем больше в почве тонкодисперсных частиц, тем выше физическое поглощение. Оно происходит за счет сил поверхностного натяжения. За счет свободной энергии притягиваются целые молекулы паров, газа, растворенные в воде вещества и целые бактерии. При этом изменяется концентрация на поверхности этих частиц, но не меняется химический состав.

На почвенных частицах удерживаются кислород, углекислый газ, азот, водород, пары воды, аммиак. Наиболее энергично поглощается вода и аммиак, менее – углекислый газ, кислород и азот. Энергия поглощения газов снижается в следующей последовательности: пары воды, аммиак, углекислый газ, кислород, азот.

Физическое поглощение может быть положительным и отрицательным.

Положительное наблюдается тогда, когда молекулы растворенного вещества притягиваются к почвенным частицам сильнее, чем молекулы воды. Так поглощаются многие органические кислоты, алкалоиды, высокомолекулярные органические соединения.

Отрицательное физическое поглощение протекает у растворимых минеральных солей и неорганических кислот. Происходит обратный процесс. Молекулы воды закрепляются почвенными частицами сильнее, а растворенные вещества находятся в растворе (минеральные соли, кислоты, щелочи).

Для удобрений известна отрицательная адсорбция аниона хлора и нитратного азота, что обуславливает их сильную подвижность в почве и возможность вымывания из верхних слоев почвы при высокой влагообеспеченности. Такое вымывание хлора, вредного для большинства растений (особенно картофеля, табака, цитрусовых), имеет положительное значение, а для нитратного азота оно нежелательно. Поэтому это необходимо учитывать при внесении удобрений.

Физическая поглотительная способность имеет большое экологическое значение: 1) положительно сорбирует не только молекулы воды, но и молекулы газов и органических соединений, в том числе различных пестицидов, способствуя их закреплению и дальнейшему разложению; 2) на поверхности частиц удерживаются разные микроорганизмы. Различные почвы обладают неодинаковой способностью поглощать микроорганизмы. Чем тяжелее гранулометрический состав, чем больше гумуса, тем выше поглотительная способность по отношению к микроорганизмам. Бактерии при поглощении их почвой снижают свою биохимическую активность, благодаря чему улучшаются санитарные условия местности, очищаются воды колодцев и грунтовых вод.

Химическая поглотительная способность (хемосорбция) обуславливает образование нерастворимых или труднорастворимых соединений в результате химических реакций между отдельными растворимыми солями в почве.

Химическое поглощение зависит:

1) от того, какие анионы находятся в почве. Анионы хлора и нитратный азот ни с какими катионами не образуют труднорастворимых соединений. Карбонаты и сульфаты с оновалентными катионами дают растворимые соли, а с 2-х и 3-х валентными – труднорастворимые. Фосфаты с одновалентными дают растворимые соли, а с 2-х и 3-х валентными – труднорастворимые.

2) состава коллоидов и реакции среды. Чем больше в почве амфолитоидов и чем кислее реакция среды, тем сильнее выражено химическое поглощение аниона. Гумусовые вещества снижают интенсивность поглощения фосфатов.

Химическая поглотительная способность имеет большое значение в закреплении почвами анионов фосфорной кислоты, органического вещества и катионов поливалентных металлов.

Химическое поглощение проявляется при внесении фосфорных удобрений:

Са(Н 2 РО 4) + Са(НСО 3) 2 2СаНРО 4 + 2Н 2 СО 3

Суперфосфат

Са(Н 2 РО 4) + 2Са(НСО 3) 2 Са 3 (РО 4) 2 + 4Н 2 СО 3

(NН4) 2 НРО4 + Са(НСО 3) 2 СаНРО 4 + 2NН 4 НСО 3

В кислых почвах, содержащих много полуторных окислов, химическое поглощение идет с образованием труднорастворимых фосфатов железа и алюминия. Учитывая свойство РО 4 3- закрепляться химически необходимо вносить фосфора в почву больше, чем нужно растениям (в гранулированной форме).

Физико-химическая или обменная поглотительная способность – способность почвенных коллоидов обменивать свои ионы на ионы почвенного раствора.

Обменные реакции в основном протекают с катионами, т.к. коллоиды заряжены отрицательно. Если базоиды, то обмен происходит анионами.

Например:

ППК 2Nа + СаSО 4 ППК Са + Nа 2 SО 4 (растворимая соль)

ППК 2Н + СаСО 3 ППК Са + Н 2 СО 3 (Н 2 О и СО 2)

ППК Са + 2NН 4 NО 3 ППК 2NН 4 + Са(NО 3) 2

Физико-химическое поглощение имеет ряд закономерностей:

1) Обмен происходит в строго эквивалентных количествах по законам обменных химических реакций;

2) Реакция обмена катионов происходит быстро (за 3-5 мин сорбируется 85 % катионов – по Гедройцу), но для установления динамического равновесия между катионами почвенного раствора и диффузного слоя необходимо 1-3 суток.

3) Любой поглощенный катион может быть вытеснен и заменен другим катионом почвенного раствора;

4) Энергия обменного поглощения различных катионов зависит от валентности, а при одинаковой валентности – от атомной массы иона. Она увеличивается с увеличением валентной и атомной массы. Исключением является водород, который хотя и имеет меньшую атомную массу, обладает высокой энергией поглощения и вытесняет другие катионы.

Li

внедрение вытеснение

5) Обменное поглощение – процесс в основном обратимый.

6) Интенсивность поглощения катионов зависит от концентрации раствора. Чем ниже концентрация, тем более активно поглощение катионов.

Вопрос «Гранулометрический состав почв. Группы механических элементов, их характеристика, влияние на свойства почв. Классификация почв по гранулометрическому составу. Значение гранулометрического состава в агрономической оценке почв»

Почва является полидисперсной системой, т. к. в состав ее твердой фазы входят минеральные, органические, и органо – минеральные частицы самых различных размеров: от молекулярных м коллоидных величин до грубых дисперсий – пыли, песка, камней. Эти элементарные частицы отличаются друг от друга не только по своей величине, но и по минералогическому и химическому составам, обладают различной активностью в отношении проходящих в почве физико–химических и биологических процессов. Водный, воздушный, пищевой режимы почвы и условия роста растений в значительной мере связаны с гранулометрическим составом почвы.

Гранулометрический состав почвы это относительное содержание в породе или почве механических элементов различной величины, выраженное в процентах к массе сухой почвы.

Н. А. Качинский предложил объединить механические элементы в следующие фракции: частицы крупнее 3 мм – камни. Фракция состоит из обломков горных пород. Положительной роли в почве нет.

3–1 – гравий, состоит из обломков горных пород и первичных минералов. В небольшом количестве улучшает воздушный режим, а в большом – затрудняет механизированные процессы;

1–0,05 – песок, состоит из первичных минералов. Такие почвы обладают хорошей аэрацией, легки в обработке, но имеют провальную водопроницаемость, в них не накапливается гумус, влага и элементы питания;

0,05–0,01 – крупная пыль, по составу и свойствам близка к песку.

0,01–0,005 –средняя пыль; 0,005–0,001 – мелкая пыль, состоят из вторичных минералов, такие почвы обладают высокой поглотительной способностью, в них накапливается много влаги, элементов питания, гумуса, но имеют плохую аэрацию, тяжелы в обработке, способны к набуханию, заплыванию и коркообразованию.

мельче 0,001 мм – ил, по составу и свойствам близок к средней и мелкой пыли.

Каждая из этих фракций отличается от остальных по своим свойствам. Для классификации почв по гранулометрическому составу все частицы крупнее 0,01 мм объединяют в «физический песок», мельче 0,01 мм – «физическую глину». Гранулометрический состав имеет большое производственное значение. Он учитывается при агротехнических мероприятиях, обработке, орошении, выборе культур и т. д.

В России утвердилась двучленная классификация, предложенная Н. М. Симбирцевым и усовершенствованная А. Н. Сабаниным и Н. А. Качинским, учитывающая генетические особенности почв (содержание гумуса, состав обменных катионов, минералогический состав и др.) и связанную с ними неодинаковую способность глинистой фракции к агрегированию. Поэтому в классификации отдельно рассмотрены три основные группы почв: с подзолистым типом почвообразования, со степным типом почвообразования, а также солонцы и сильно солонцеватые почвы.

Задание к данному разделу: построение графика распределения содержания гумуса по профилю почв и его описание; определение вида по степени гумусированности данной почвы, исходя из количества гумуса в верхнем горизонте; определение мощности гумусового горизонта (он заканчивается там, где содержание гумуса менее 1%).

Гумус -- основное органическое вещество почвы, содержащее питательные вещества, необходимые высшим растениям. Гумус составляет 85--90 % органического вещества почвы и является важным критерием при оценке её плодородности.

Гумус осуществляет в почве тройственную функцию: физическую, химическую и биологическую. Физическая функция - это создание водопрочной почвенной структуры, что обеспечивает благоприятную циркуляцию воды, воздуха, нужную температуру и предопределяет хороший рост корней в почве. Химическая функция заключается в том, что гумус является хранилищем элементов питания. В результате деятельности микроорганизмов гумус постепенно разлагается (минерализуется), освобождая заключенный в нем азот, фосфор, калий и другие элементы. Биологическая функция гумуса - это создание благоприятных условий для развития и деятельности микроорганизмов.

Содержание гумуса в верхнем горизонте разных типов почв колеблется в широких пределах: от 1% в серо-бурых пустынных почвах до 12-15% в черноземах. Разные типы почв отличаются характером изменения количества гумуса с глубиной. На процесс образования гумуса влияют следующие факторы: водно-воздушный режим, температурный режим, состав органических остатков, механический состав и физико-химические свойства почв.

По степени содержания гумуса (перегноя) почвы подразделяются: очень низко гумусированные (<2%), низкогумусированные (2-4%), среднегумусированные (4-6%), высокогумусные (6-10%) и очень высокогумусные (>10%) .

Исходные данные:

Горизонт

Мощность, см

Можно сказать, что с увеличением глубины количество гумуса сначала увеличивается до значения 2,00 % в горизонте В 1, затем уменьшается до значения 1,01% в горизонте ВС. Среднее значение гумуса 1,3-1,7 %. В горизонте В 1, В 2 содержится большое количество органического вещества в форме остатков зелёных растений. В гумусовом горизонте много обменного кальция, он накапливается в горизонтах В 1, В 2, тем самым способствуя закреплению гумуса в минеральной части, созданию почвенной структуры. Горизонт ВС беден гумусом, что связано с ограниченной биологической активностью, в нем действует меньше живых почвенных организмов, следовательно, уменьшается и количество органического вещества. Гумус полностью выносится в нижнем горизонте С. Почва малогумусированная.

Из всех сложных, взаимосвязанных процессов происходящих в почвах, наиболее важное значение имеет регулирование направленности трансформации органического вещества и, прежде всего, образования и минерализации гумуса.

Стабилизация гумусового состояния почв позволяет оптимизировать агротехнические приемы возделывания культур. Содержание гумуса в почвах в значительной мере определяются приходом растительных остатков, коэффициентом их гумификации и скоростью минерализации органического вещества.

Применение известковых и минеральных удобрений сопровождается усилением процессов минерализации органического вещества почвы, однако за счет увеличения количества послеуборочных растительных остатков вследствие лучшего развития растений образование гумусовых веществ может преобладать над процессами минерализации. В то же время при запашке одинакового количества органического вещества в разных климатических зонах накапливается различное количество гумуса в почве.

Содержание гумуса в почве для определенных почвенно-климатических условий, несмотря на варьирование, представляет собой довольно стабильную величину, и для ее заметного увеличения требуется применение высоких доз органических удобрений. При этом, чем выше содержание гумуса в почве, тем больше требуется органических удобрений для его поддержания на данном уровне.

В зависимости от климатических условий и гранулометрического состава при стабильном поступлении растительных остатков содержание гумуса в почвах стабилизируется на определенном уровне.

Содержание гумуса оказывает большое влияние на плотность почвы. Установлено, что уплотняемость почв в результате прохода по полю тяжелой техники и последующее действие уплотнения почв на рост и развитее сельскохозяйственных культур проявляется по-разному в зависимости от содержания в них органического вещества и гранулометрического состава. При содержании в дерново-подзолистых и серых лесных суглинистых почвах гумуса, соответственно, менее 2% и 3,5%, после однократного прохода тяжелых сельскохозяйственных машин плотность почвы увеличивается до 1,3-1,5 г/см 3 , а при содержании в этих почвах гумуса более 3% и 5% — до 1,25-1,28 г/см 3 . При этом после весеннего оттаивания, уплотненные осенью хорошо гумусированные почвы, восстанавливают плотность до исходного равновесного состояния, в то время как на слабогумусированных уплотненность снижается очень медленно. Поэтому на всех почвах для снижения их плотности и повышения устойчивости к переуплотнению необходимо систематическое применение органических удобрений.

При уплотнении почв и, прежде всего, пахотного слоя, резко снижается эффективность органических и минеральных удобрений. Установлено, что многократный проход тяжелой обрабатывающей техники по полю, и особенно по посевам, снижает урожайность зерновых культур на 10-20%, многолетних трав на 20-30 и овощных культур на 30-40%. Вследствие переуплотнения почвы увеличивается в 1,4-1,8 раза ее сопротивление обработке. На уплотненных почвах ослабленные растения сильнее страдают от болезней, вредителей и неблагоприятных погодных условий. Наиболее эффективными способами улучшения биологических, физико-химических свойств почв являются совместное применение известковых и органических удобрений, а также расширение посевов многолетних бобовых трав. Необходимо отметить, что определенные физические свойства почвы (водный, воздушный и тепловой режимы) важны не сами по себе, а в большей мере для обеспечения оптимальных условий внутрипочвенной трансформации веществ, обусловливающих нормальное произрастание растений.

Уплотненные почвы отличаются низкой микробиологической активностью, слабой водо — и воздухопроницаемостью, поэтому после выпадения осадков на полях в понижениях застаивается вода, а со склоновых земель значительная часть дефицитной воды теряется с поверхностным стоком, вызывая эрозию почвы даже при небольших склонах.

На малогумусных уплотненных почвах значительно снижается доступность растениям природных запасов элементов питания, урожайность и эффективность удобрений. Плотность почв обусловливается их гранулометрическим составом и содержанием гумуса. Оптимальная плотность почвы зависит от биологических особенностей растений. Для зерновых и зернобобовых культур, однолетних и многолетних трав оптимальная плотность песчаных и супесчаных почв составляет 1,30-1,40, суглинистых — 1,15-1,25, глинистых -1,05-1,10 г/см 3 , для пропашных культур, соответственно — 1,25-1,30; 1,10-1,20 и 1,0-1,05 г/см 3 .

Наряду с агрофизическими свойствами почвы, продуктивность сельскохозяйственных растений в значительной мере зависят от её агрохимических свойств и, прежде всего, рН среды, гидролитической кислотности, емкости катионного и анионного обмена, суммы и состава поглощенных оснований, степени насыщенности ППК основаниями и содержания элементов питания.

Наибольшей способностью обменно поглощать катионы обладают органические коллоиды, илистая и близкие к ней фракции почв. Частицы крупнее 0,01 мм (крупная пыль — 0,01-0,05 мм, песок 0,05-1 мм), состоящие преимущественно из полевых шпатов и кварца, не проявляют заметной катионообменной способности.

Важно отметить, что почвенный поглощающий комплекс (ППК) не является каким — либо целостным материальным носителем обменных катионов. Он представляет собой варьирующую для разных почв совокупность тонкодисперсных коллоидных и предколлоидных частиц минеральной и органической, неживой и живой природы, обладающих ионообменной способностью.

Состав обменных катионов служит одним из основных показателей пищевого режима почвы. Более 98 % доступных растениям катионов адсорбировано на поверхности ППК и лишь 1-2 % находится в почвенном растворе. Благодаря динамичному равновесию между обменнопоглощенными катионами и катионами, находящимися в почвенном растворе, их концентрация в нем довольно стабильна и обусловливается содержанием ионов в ППК. Изменения содержания элементов питания в почвенном растворе, вызываемые потреблением их растениями или внесением удобрений, обычно незначительны, поскольку ионы адсорбированные ППК выступают в виде буфера.

Обменные макро — и микроэлементы являются непосредственным источником питания растений. В агрохимической практике определение обменного К + , Mg2 + , Cu 2+ , Zn 2+ , Mn 2+ и Co 2,3+ служит для оценки уровня обеспеченности ими сельскохозяйственных культур и буферности почвы, характеризующей стабильность содержания отдельных элементов питания в почвенном растворе несмотря на постоянное потребление их растениями.

Содержание гумуса в почве находится в постоянном динамическом равновесии. Несмотря на относительно высокую устойчивость гумуса к микробиологическому разложению (его возраст составляет 500 — 5000 лет) в почве постоянно происходят процессы его минерализации и новообразования. Поэтому гумусовое состояние почв зависит от того, какой из этих процессов преобладает — минерализация или гумификация.

Количество гумуса является одним из важнейших показателей почвенного плодородия. Его запасы в значительной степени определяют агрохимические, агрофизические и биологические свойства почвы. Богатые гумусом почвы отличаются высокой буферностью в отношении многих факторов — пищевого, водного, температурного и воздушного режимов. В таких почвах снижаются потери элементов питания от вымывания, повышается скорость разложения пестицидов, уменьшаются затраты растений, особенно корне — и клубнеплодных, на механическую работу их корневой системы на деформацию и смещение почвенных агрегатов во время роста, значительно снижаются энергетические затраты на обработку почвы. Содержание гумуса зависит от почвенно-климатических условий, структуры посевных площадей, интенсивности обработки почвы, количества применяемых удобрений и мелиорантов. При длительном использовании почв в качестве пашни гумус непрерывно минерализуется, а элементы питания отчуждаются с урожаем или в результате непроизводительных потерь. Наибольшие потери гумуса вследствие его минерализации и эрозионных процессов происходят в парующей почве и под пропашными культурами по сравнению с многолетними травами и зерновыми культурами.

Поэтому при разработке мероприятий направленных на поддержание или повышение плодородия почвы важно проводить расчеты гумусового баланса.

Баланс гумуса в почве может быть бездефицитным, если его приход (образование) в результате гумификации свежих растительных остатков и органических удобрений полностью уравновешивает расход за счет минерализации и эрозии почвы. Баланс считается положительным, когда количество вновь образованного гумуса превышает его расход, и отрицательным, если приход гумуса не компенсирует его потери. Расход гумуса рассчитывают по интенсивности его минерализации в конкретных условиях.

Установлено, что в Нечерноземной зоне в дерново-подзолистых среднесуглинистых почвах под культурами сплошного сева (зерновыми, зернобобовыми, травами) ежегодно минерализуется около 0,8-1,2% (0,4-0,8 т/га) гумуса, под пропашными культурами (картофель, свекла, капуста и др.) — 1,6-2,0%, в парующей почве — 2,53.0%. В черноземных почвах коэффициенты минерализации примерно в 2 раза ниже (0,5; 1,0 и 1,5% , соответственно), чем в дерново-подзолистых, однако в количественном отношении, вследствие более высокой их гумусированности, под культурами сплошного сева минерализуется 0,8-1,2 т/га гумуса. В легких песчаных и супесчаных почвах интенсивность минерализации гумуса в пахотном слое в 1,5 -2 раза выше, чем суглинистых.

Примерный расход гумуса можно также рассчитать по методу, предложенному И. В. Тюриным (1956 г.), в основу которого положен вынос азота с урожаем и коэффициент использования минерализованного азота почвы растениями за период вегетации. В настоящее время в Нечерноземной зоне России в среднем около 85% азота, отчуждаемого с урожаем основной и побочной протекцией, приходится на азот органического вещества почвы и остальная небольшая часть (15%) на азот органических и минеральных удобрений, а также азот поступающий с осадками, пожнивными остатками бобовых и за счет азотфиксации несимбиотическими бактериями. Коэффициент использования минерального азота почвы (включая азот текущей минерализации) растениями составляет примерно 70%. Учитывая, что доля азота в гумусе составляет около 5% (1/20 часть), можно определить количество минерализовавшегося гумуса за период вегетации. Например, урожаем озимой пшеницы 2,0 т/га выносится с 1 га около 60 кг азота, доля азота гумуса в урожае (85%) — 51 кг. Исходя из того, что используется около 70% минерального азота, почвы, общий размер минерализованного азота почвы равен 51: 0,7 = 73 кг/га, а количество минерализованного гумуса — 1,45 т/га (73 кг -20).

Примерные коэффициенты гумификации послеуборочных растительных остатков и органических удобрений (%):

1. Многолетние бобовые травы — 0,25

2. Многолетние злаковые травы — 0,20

3. Зерновые и зернобобовые культуры — 0,18-0,20

4. Однолетние травы на сено — 0,18-0,20

5. Однолетние травы на зеленую массу — 0,12-0,15

6. Картофель, корнеплоды, овощи — 0,05-0,08

7. Навоз крупного рогатого скота — 0,20-0,25

8. Торф низинный — 0,25-0,30

9. Торфонавозные компосты — 0,25

Количество пожнивных и корневых остатков зависит от урожайности, биологических особенностей сельскохозяйственных культур и определяется по массе основной продукции с учетом поправочных коэффициентов.

При расчете гумусового баланса в севообороте учитывают расходные (размер минерализации под каждой культурой) и приходные статьи — образование гумуса за счет органических удобрений и пожнивно-корневых остатков.

Например, при возделывании ячменя на дерново-подзолистой среднесуглинистой почве, содержащей 3% гумуса (около 90 т/га гумуса в пахотном слое почвы), текущая минерализация составляет 1% от валового его содержания в почве или 0,9 т/га.

Далее можно определить количество пожнивно-корневых растительных остатков ячменя. При урожае 30 ц/га их в почве останется примерно 36 ц/га. Умножая массу пожнивно-корневых остатков ячменя на коэффициент их гумификации (0,20), находим, что приход вновь образованного гумуса составит 0,8 т/га. Таким образом, при возделывании ячменя отрицательный баланс гуммуса составил 0.1 т/га (0,9 т — 0,8 т).

Проведя аналогичные расчеты по всем культурам севооборота, можно определить баланс гумуса (разница между приходом и расходом) по полям и в целом за ротацию.

Установлено, что для поддержания гумусового равновесия дерново-подзолистых почв легкого гранулометрического состава обеспеченность органическими удобрениями должна составлять 12-14 т/га, средне — и тяжелосуглинистых — 10-12 т/га. В серых лесных почвах и черноземах сохранение содержания органического вещества почвы на исходном уровне (стабилизация) возможно при обеспеченности навозом соответственно 8 -10 и 6-8 т/га, соответственно. Систематическое применение более высоких (низких) доз органических удобрений, чем необходимо для поддержания бездефицитного баланса гумуса в почве, приводит вначале к заметному повышению (снижению) его содержания, а затем содержание гумуса стабилизируется на определенном новом количественном уровне.

В то же время как максимальное, так и минимальное содержание гумуса имеет свои границы, зависящие от природных условий, типа почвы, ее хозяйственного использования и гранулометрического состава, обусловливаемого количеством физической глины (тонкодисперсных вторичных минералов) в ней. Минимальное содержание гумуса в почве наблюдается при резко несбалансированной системе земледелия — длительном паровании почв или возделывании пропашных монокультур без применения органических и минеральных удобрений.

В этих условиях баланс органического вещества в почве находится на самом низком уровне динамического равновесия, а почва практически перестает терять гумус.

Максимальное содержание гумуса равно величине, при которой систематическое внесение органических удобрений в дозах значительно превышающих компенсирующие, не сопровождается увеличением гумуса в пахотном слое.

Большое влияние на агрохимические, физические и биологические свойства почвы, а, следовательно, и на условия произрастания растений оказывает реакция почвы. От реакции среды существенно зависит доступность растениям макро — и микроэлементов элементов, эффективность удобрений, активность и групповой состав почвенной микрофлоры, скорость минерализации растительных остатков и химического выветривания почвенных минералов, характер гумусообразования (соотношение гуминовых и фульвокислот), состав вторичных минералов и направленность почвообразовательного процесса в целом. В свою очередь реакция среды обусловливается многими перечисленными выше процессами, протекающими в почве. Избыточная кислотность почвы, особенно при высоком содержании активного алюминия, является одной из главных причин низкой продуктивности сельскохозяйственных культур и вызывает отрицательные экономические и экологические последствия. В частности, на этих почвах на 30-40% снижается эффективность минеральных удобрений, в 3-5 раз увеличивается накопление в растениях тяжелых металлов и радионуклидов. Подвижный алюминий многократно усиливает отрицательное действие кислотности на сельскохозяйственные растения, активность микрофлоры и доступность элементов питания. Алогичное влияние оказывает также алюминий подпахотных горизонтов почвы.

Негативное действие ионов Н + и Al 3+ на растения зависит не только от их количественного содержания в почве (мг-экв/100 г), но и их доли (%) занимаемой в составе поглощенных катионов — степени насыщенности емкости катионного обмена основаниями (Са 2+ , Mg 2+ , К + и Na +). По Д. Хиссинку, степень насыщенности почв основаниями показывает, какая часть (доля) ЕКО приходится на поглощенные основания.

Читайте также: